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EFFECTS ON THE ROLL OF ATIRCRAFT

By John M. Hedgepeth, Pauvl G. Waner, Jr.,
and Robert J. Kell

SUMMARY

An approximate linearized lifting-surface theory is used in conjunc-
tion with structural influence coefficients to formulate a methed for
analyzing the aeroelastic behavior in roll of an aircraft. Rolling effec-
tiveness and sileron-reversal speed are compubed by the use of a Galerkin-
type procedure. Results obtained for two example confilgurations by using
this method are compared wlth the results obtained by using the more
refined method of NACA TN 3067. The agreement is excellent.

INTRODUCTION

In the design of modern high-speed aircraft, it is generally recog-
nized that aeroelastic effects must be accounted for accurately. One
method which should be capsble of ylelding reliable predictlons of the
aeroelastic effects on the roll of supersonic aircraft has been presented
in reference 1. This method, which mekes use of structural influence
coefficients to determine the distortions and lifting-surface theory to
determine the alrloads, involves, however, a considerable amount of com-
putational labor. For this reascn, some means for simplifying the com-
putations without introducing an objectionable amount of error was sought.
The purpose of this paper 1s to describe the resulting simplified method
and to evaluate 1ts accuracy.

In this paper, attention is confined to the rolling problem. The
actual alveraft configuration is left general, the only restriction belng
that the effects of chordwise bending sre sssumed to be negligible. Both
subsonic and supersonic speeds can be treated by the method, but partic-
wlar attention is paid to the supersonic regime in the examples.
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SYMBOIS
A parameter defined by equaetion (13a)
Bg»Bp,Bs parameters defined by equations (13b)

Cze,Czp,CZB rolling-moment derivatives defined by equations (13c)

GJ elementary torsional stiffness of wing

GL(y,n) structural-twist Influence functlon due to unilt concentrated
load at y-axis

auly,n) structural-twist influence fumction due to unit conecentrated
torque

L(y) aerodynemic load per unit span, positive upward

M(y) zerodynamic pitching moment about y-sxis per unit spen,
positive in positive twist directlon

Mo free-stream Mach number

Pp static pressure at altltude

Po standard static pressure at sea level

aly) serodynamic pitching moment sbout elastic exls per unit
span, positive in positive twlst direction

v free-stream velocity

a ratio of fuselage radius to exposed semispan of wing

b total wing span, 2(al + 1)

cly) wing chord

c mean geometric chord

alleron chord

¢y section 1ift coefficient, L(y)/ac
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Subscripts:
F

R

Ce

P

rev

section pitching-moment coefflelient about y-axis, M(y)/qc2

section pitching-moment coefficient about elastlc axis,
a(y) /ac?

distance measured forward from y-axls to elastlc axis,
expressed as fractlion of local chord

amplitude of twist mode shape

exposed wing semispan

rolling anguler veloclty, positive in right-hand sense
tangent of wing-tip helix angle

dynamic pressure

coordinate system (see fig. 1)

cotangent of Mach angle,\[Mbg -1

sngle of twist of wing (see fig. 1)

twilst mode shape used in Galerkin-type procedure

rolling effectiveness, (pb/EV)F/(pb/ZV)R

aileron deflection (see fig. 1)

ratio of specific heats

flexible wing

rigid wing

effective aerodynamic coefficients due to twist
parémeters or aercdynamlc coefficients due to unit pb/2V
aileron reversal

parameters or aerodynamic coeffilcients due to unit aileron
deflection
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8 parameters or aerodynemic coefficients due to unit twist
shape

Matrix notation:
[ square metrix
L row matrix

|| column metrix

E J diegonal matrix
ANATYSTS

The analysls proceeds along the same lines as that in reference 1;
that is, the structural deformations are expressed in terms of the air-
loads, the airloads are obtalned, and then the two are combined to form-
ulate the aeroelastic problem.

Structural Deformations

Consider the configuretion shown in figure 1. If the effects of
chordwise bending are assumed to be negligible, the only distortion of
interest in this problem is the twist 6(y) which can be expressed in
terms of the section 1ift L(y) and the section moment about the y-axis
M(y) as follows:

1 1
8(y) = L G (vsn) L(n) dn + /; a(y,n) M(n) dn (1)

where GL(y,n) and GQ4(y,n) are influence functions which define the
wing twist at y due to a unlt concentrated load at the y-axis and a
unit concentrated torque, respectively, at the spanwise station 1. As
wag pointed out in reference 1, these influence functions can be found
either theoretically (refs. 2, 3, and 4) or, if necessary, experimentally.

IT an elastic axis (defined as a line along which loads can be placed
without producing significant twist anywhere) exlsts, this equation can
be simplified to be
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1
o(y) = fo ayly,n) a(n) an (2)

The quantity Q(y) is the section torgue about the elestic axis and is
given by

oly) = M(y) - e(y) cy) Liy) (3)

in which e(y) is the distance measured forward from the y-axis ‘o the
elastic axis, expressed as a fractlon of the local chord.

Aerodynamic ILoads

The section 1ift and pitching moment can be expressed in coefficient
form as

L(y)

li

qa ely) ey(y)
()

M(y) = q c2(y) en(y)

By assuming lineesrity of the aerodynamics, the loading ccefficilents for
steady roll can be wriltten as

ey = o1 () 8() + e () B ey (1) B
(5)
ea(y) = eng () 8(¥) + enp(y) 22 + eng(¥) 8

The principal way 1n which this analysis departs from that of reference 1
is in the manner of cobtaining the loads due to structural deformation

(the first term on the right-hend side of egs. (5)). In the method of
reference 1, the loads due to the arbitrary angle-of-attack distributions
which arise from structural distortion were determined by an exact applica-
tion of lifting-surface theory; in the present method, these loads are
calculated approximately as can be seen from the following development.
Consider, for exemple, the meaning of czae(y). This function is actually
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the ratio of the section 1ift coeffleclent dvue to structural distortion
to the angle of twist 6(y). In general, czae(y) is dependent, in an

apparently complex fashion, on the shape of the twlst curve; different
ghapes yleld different values of this function. Fortunately, however,
the vealue of czae(y) is relatively insensitive to changes in the shape

of o(y). This fact suggests that czae(y) can be adequately approximated

by calculating it for an angle-of-attack distribution that 1s reasonably
close to the expected actual mode shape and then by considering this
quantity to be fixed with respect to changes in the mode shape. This
procedure of using an effective lift-curve slope, which has been used in
the past by many investigators (for example, see ref. 5), obviously allows
& considerable sgimplificatlon of aeroelastic analyses.

For the rolling problem, the section rolling derivatives czp(y)
and cmp(y), which must be determined for use in equation (5), can also
serve as a convenient basis for determining czae(y) and cmae(y). The

angle-of-attack distribution that yilelds these coefficients,

sttty : 6)

) = - (L +a)1

is, for the present aerodynamic purposes, & fair approximation to the
actual expected mode shape provided that a, the ratio of the fuselage
radius to the exposed semispen of the wing, is not too large. Thus, the
following expressions for czae and cmae are used:

N
(1L + a)2

S e )
al + ¥y

1

Czae(Y)
¢ (1)

A+t ()

Cmae(Y) = f;E—:f;f'cmP

It follows from the foregoing development that the only aerodymnamic
informetion necessary for the aeroelastic analysis of the rolling problem
is the section rolling and aileron derivatives. At supersonic speeds,
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these quantities are readily obtainable for most reasonable conflgurations.
For rectanguler wings, & rather complete derivation of the section 1ift
and pltching-moment coeffilclents due to rolling and aileron deflection

is included in reference 1. Lift and pitching-moment distributions due

to roll can be obtained from references 6 and 7 for a wide variety of plan
forms; the 1lift distributions are given dlrectly, and the pitching-moment
distributions can be found by proper integration of pressure distributions.
Aileron loads can be found by methods such as those illustrated in ref-
erence 8; in some cases, two-dimensional strip theory should be adequate.

For subsonic speeds, no such complete coverage has been made. In
the first place, all the theoretical approaches are approximate to some
extent. 1In addition, not nearly so large a varilety of plan-form shapes
has been analyzed. However, papers such as reference 9 afford a consider-
able amount of help 1n finding the desired serodynsmic derivatives.

Aercelastic Equations
If the expressions for the loads (eqs. (4) and (5)) are substituted

into the equllibrium equation (eq. (l)), the followlng aerocelastic equa-
tion results:

1
o(y) = qf [c a(y,m) erq (n) + ¢ auly,n) Cmae(n)] 6(n) dn +

0
2 Z[ccﬂ ) eq (1) + € Gyly,n) ()]a+
qev-o ¥,1 ;pn Guly,n Cmy (1) | AN
7’ 2
qﬁj; [c GLly,m) egg(n) + e auly,m) cmg(n)]dn (8)

For steady roll, the total rolling moment must be zero. Thus,

i .
0= fo clal + 1) E:lae(n) 8(n) + g% c1p(n) + 3 czg(n)] an (9)
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SOLUTION OF AEROELASTIC EQUATIONS

Galerkin-Type Procedure

If, for a particuler conflguration, the values of ¢ and O are
given, equations (8) and (9) can be solved simultaneously to yield the
values of twist 06 and rate of roll pb/2V for the elastic aircraft.

In reference 1, these equations were solved by a collocation procedure
that involved the solution of high-order matrix equatlons. A method

that is considerebly simpler (which takes the form of the Galerkin method)
is used herein. The solubtlion proceeds as follows:

Tet
6(y) = k 6:(y) (10)

where Gl(y) is an approximation of the actual expected twist shape.

Note that, although the Galerkin solutlon generally involves the use of
a serles of such functions, only one term is used for thils particular
application.

If the approximetion for 6(y) (eq. (10)) is introduced into equa-
tion (8), and the resulting equetion is multiplied by 6,(y) end inte-

grated over the exposed semispan of the wing, the following equation is
obtained:

boo
kf el(y)dy=qkf
0 0

1 1
4 P’g% ‘/O \/; 9;_(Y) [C ar,(v,m) CIR(T]) + ¢2 auly,m) cmp(q)} an dy +

1 Al
fo 91(y) [c ar(y,m) clae(") + ¢2 au(y,n) cmae(n):l 81(n) an ay +

1Pl
foO fo 91(31)1:0 G(vsm) eygln) + c® ay(y,n) Cmg(n)]dn dy

(11)
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Tntroduction of equation (10} into equation (9) yields

1 2
b
0= kg/ﬂ clal + < (n) o an + 22 U/‘ clal + e, ( dan +
. ( 1) 1o U7 1(n) dn 7 Jg ( n) 1 n) dn

1
Sfo c(al + n) g (n) dn (12)

Dividing equations (11) and (12) by © yields two simultaneous

b
equations in two wmknowns, k/S and E—/%. The quantity that is actually
2v

sought is the latter; solving for this quantity glves

AC, - q(B Cy. - BsC
b 1 3] 7’8 $) Ze)
P_/a _ s (13)

=V, ACy, - Q(Beczp - chle)

- where

L 2
A= f 0,7(y) ay (13e)
o]
1 A
Bo = fo fo el(y)[c ar,(y,m) Cz%(ﬂ) + 2 auly,m) cmae(ﬂ)] 8,(n) an dy
1 1
e [ [ 0o nem e m o ot amy]eo o L )

1 1
Bs = k/; tj; Bl(y)[% ar(y,m) cza(n) + c2 ay(y,n) cms(qi]dn dy
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and

1
1
07'9 = ——— f c(al + 1) czae(n) 61(n) dn
21°8(1L +a) "0

1
Cyp = ———L——f c(al + n) czp(n) dn > (13e)
2198(1 + a) " 0
1
1
Cza = ————————————u/\ c{al + 1) cza(n) dn

2193(1 + a) O

The quantitiles Cze, CZP’ and CZB are actually the rolling-moment coeffi-

cients (based on exposed wing area) resulting from a unit mode shape 81,
a unit pb/ZV, and a wit B8, respectively.

Rolling effectiveness.~ The rolling effectiveness ¢ ls defined as
the ratio of the rate of roll of the flexible airplane to the rate of
roll that would occur if the airplane were rigid. The rate of roll for
the rigid wing is given by

Therefore, the rolling effectiveness is

By Bs C1
2, 2R

b B Cy

5 3]

<2V/> 1-g/2_fpte
R

b
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Aileron reversal.- The dynamic pressure at aileron reversal can be
found by setting ¢ equal to zero. The result is

1
AQrey = —————— (15)
Bg By CZG
A A 015

Twist mode shape.- The mode shape 87 should be & reasonably good

approximation to the actual twist expected. One possible shape that may
meet this requirement is the twist that would result from the application
of the aileron loads only. This shape is glven by

1
6,(¥) = fo [c ar(y,n) czg(n) + ¢ Gy(y,n) cmg(n)] dn (16)

Simplifications for wings with elastic axis.- When an elastic axis
exlsts, the structural equilibrium is expressed by equation (2) rather
than equation (1). Therefore, the quantities Bg» Bp, and By (in

egs. (1%b) and the definition of the twist mode shape (eg. (16)) can be
altered by deleting the terms containing Gp(y,n) in equations (1%b)

and (16) and by replacing cmue, Cmy end cpy With

3
c = C -~ec
Gae Doe lq

Cqp = Cmp = © 7 s (17)

CqS:Cm_a—eCZS

Nunmerical Eveluation of Integrals

The Galerkin procedure Jjust presented involves the calculation of
a number of integrals. In this section, these integrals are found
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numerically by using Simpson's rule with 10 equal spanwise intervals.
Matrix notetion is used to facilitate the representation of the integrals.
The integration scheme and the matrix notation are similar to those set
forth in the section entitled "Matrix Operations” in reference 1.

In metrix form, the quantities defined by equations (13a), (13b),
and (13c) are

a= fpaf [8] o] (28)
N 7] [~ a0 1 ]
Bo=| o1 || s ar, S N c ey | *
§ N L NI N
N . < 7N 7
| o1 | S Gy S 6y c2 c%e‘
L ™ L )J L N
< I 1K N
Bp=| 61 | s Gy, s c ey, | *
- N L 4 = N
> (19)
< 1 T~ 7
| x| | s Gy S o2 ep,
N L B N
N T 1l KN ]
By = L 01 J 8 G, 5 c czg +
- N PR A
< ] T K ]
L 84 J S Gy S c2 Cmg
SN 4
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and
\
Cze = ————JL————wgl + yJ S 01 c czae
2123(1 + a)
1
Cip =4——————————J?Z + yJ S c ey > (20)
21°98(1 + a) P
Cig = —1__|_az + y_| S ¢ e
2193(1 + a)
)

In these definitions, L?%J, [éi], and |sl‘ are row, diagonal, and
column matrices, respectively, made up of the assumed twlst shepe; [SJ

is an Integrating matrix given by

[S] = % b . (21)

This pearticular Integrating matrix, of course, has been obtalned by
applying Simpson's rule. Other schemes for numerical integration could

be used by eppropristely modifylng [S]. It 18 questionable, however,
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whether any increase in accuracy obtalned by changing the integration
rule would be worthwhile for this problem. Note that, for simplicity,
the subscript notation used in reference 1 to denote the location of
elements in the mabrices has been dropped in this paper.

The mode shape 67 (eq. (16)) is written in matrix form as

It

81 G, S c e | * G ) c? Cm5|(22)

When an elastic asxls existe, the matrix formulation 1s considerably
simplified by the same procedure mentloned previously; thet 1s, in equa-
tions (19) and (22), the terms involving F&J should be deleted, and

the column matrices involving coefficilents of moments about the y-axils
should be replaced by coefficients of moment sbout the elastic axis.

APPLICATION

Computational Procedure

As can be seen from the preceding anslysis, the requisite gquantities
for determining the aeroelastlc effects on the roll of a particular air-

craft are the structural influence coefficients [GL] and [Gy] and

the aerodynamlc derivatives CZP’ cmp, Clys and. Crng * (The derlva-
tives ¢ and ¢ are glven in terms of c and c¢ respective
zde Moo &g Zp my? pe 1y,

by eqs. (7).) The influence coefficients are dependent on the structure
only, but the aerodynemic derivatlves vary with Mach number. If a range
of Mach numbers is to be covered, therefore, these derlvatives must be
calculated anew for each value of My.

Not only the aerodynamic derivatives but also the mode shape 07
(as calculated from eq. (22)) varies with Mp. The variation of the
derivatives is unavoidable; the veriation of 83 can often be clrcum-
vented, however, by calculating 8, for a particular Mach number and
then by using this same mode shape for the other values of Mgy. This
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process would Involve little loss in accuracy provided that the 1ift
and pitching-moment distributions due to alleron deflection do not change
radically with Mach number.

With ©3 determined, the calculation of the values of the quantities
appearing in equations (13), (1L), end (15) proceeds in a straight for-
ward fashion. (The matrix multiplications in egs. (18), (19), and (20)
should be performed from left to right because the varisble aerodynamic
derivatives are the last terms.) With these quantities determined, the
dynamic pressure &t alleron reversal gpey c8n be calculated from equa-

tilon (15), and the rolling effectiveness ¢ for other wvalues of g can
then be computed from equation (14). This process is repeated for each
Mach number wmtil the entire range is covered.

Sample Calculations

The method derived in this report is applied to two example config-
urations. Both of these aircraft bhave two flexible rectangular wings
mounted diametrically on a long cylindrical fuselage; both aircraft have
full-spen, 0.2-chord, trailing-edge ailerons. Attention is restricted to
the supersonic-speed regime.

The two configurations are shown in figure 2 and are designated as
models 1 end 2; the wings of both models have the same plan-form aspect
ratio of 1/c = 1.5. The wings differ, however, in that model 1 has a
rectangular cross sectlon with a thickness ratio of 0.02, whereas model 2
has an NACA 65A003 cross-sectional shape. The models also differ in
that the value of a, the ratio of fuselsge radius to exposed wing semi-
spen, is 0.2 for model 1 and 0.236 for model 2. Both wings were assumed
to be made of solid aluminum slloy.

The torsional influence coefficilents for the two models sre given
in table I. These Influence coefficlents were obtained from an approxi-
mate plate theory which 1s essentially the same as that of reference L;
however, the enalyses of the two models were slightly different: For
model 1, the root was assumed to be completely clamped, and no account
was made for the stiffening flange effect of the bent-up aileron. For
model 2, some root flexibility was allowed, and the flange effect of the
aileron was taken into account approximstely. In both cases, the analyses
indicated the existence of an elastic axis; therefore, only the torsional

influence coefficients due to torque [GMJ are given in tgble I.

As 1s evlident from the preceding discussion, model 1 represents an
idealized configuration (actuslly the same as the model consildered in
ref. 1), and model 2 represents a more realistic aircraft. The following
teble summarlzes some of the Information necessary for analyzing the models:
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Model 1 Model 2
L P T 1.5
T o I~ 0.2
e o = 0.236
© v « ¢ o 4 s e e s e e 6 e s s 4 e e e e e e e e e e 0 0.0485

No absolute dimensions have been speclfied because, as 1s shown in ref-
erence 1, only the ratios are needed to anslyze the aercelastic-rolling

problem.

The aerodynamic rolling derivetives were obtained for M, = 1.108,
1.202, 1.338, 1.667, and 2.848 for which tables are available in ref-
erence 1. For 1llustrative purposes, the values of Clp and cqP for

the two models at Mg = 1.202 are given in teble II for values of y/1l
between O and 1.0 in 0.1 Increments. The corresponding values of Clae

and cQae are also included in this table.

The aileron derivatives cig and Cqg WeTe found by assuming that

two-dimensional theory is adequate for all statlons except at the tip
where the loads are zerc. With this essumption, the alleron loads become

_ 4 cg N
CY,B = E_é_ -_l—'— O, O-l, 0-2, .« o o 0.9
> (23)
eig = O % = 1.0
2 C C
an = - "B‘ za"<l + 26 - "CE) X': O’ Ocl, 002, « e e On9
r (k)
- N
cq6 =0 7 1.0

where
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The assumed twilst mode shape was calculated from equation (22) and
is given in teble IIT1 for the two models. The shapes have been normalized
by dividing by the tip ordinate and apply for ail Mach numbers as a con-
sequence of the inveriance in the shape of the assumed alleron derivatives
given by equation (2&). In the caleculation of the mode shape from equa-
tion (22), the simplifications resulting from the existence of an elastic
axls were employed. These simplificetions were also used wherever else
applicable.

With these mode shapes, then, the values of A, By, Bp, B CZG’
Cips and Cy were computed from equations (18), (19), and (20) for
each Mach number. These quantitles are tabulated in table IV for the
two medels. TFrom these gquantitles, the dynemlc¢ pressure at reversal and

the rolling effectiveness ¢ can be calculated by equations (15) and (1k),
respectively.

RESULTS AND COMPARISONS

The results of the alleron-reversal calculetions for the two models
are shown by the test-point symbols in figure 3. In this figure the
results are given in the form of a plot of the pressure ratio at rever-

P

sal (—é) against Mach number, where P, is the static pressure at
Fo/ rev

reversal,

P = 2
b= —> Qrev
Mo

and Py 1is the standard sea-level statlc pressure, 2,116 lb/sq £&. For

comparison, the results obtained by the method of reference 1 are also
shown in the figure. The sgreement is seen to be very good, particularly
at the higher Mach numbers.

For the two example configurations comnsidered, the alleron-reversal
results alone provide an adequate test of the accuracy of the method of
this paper. This fact arises from the virtual linearity of the variation
of rolling effectiveness ¢ with dynemic pressure (or pressure ratio).
The rolling-effectiveness curves for model 1 are given in reference 1 and
are almost linear. For model 2, the celculations by the method of ref-
erence 1 exhibited even better linearity. Similar degrees of linearity
also result from the method contained herein. For the above reasons, no
rolling-effectliveness plots are included in this paper.
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CONCLUDING REMARKS

The simplified method outlined in this paper for the prediction of
aeroelastic effects on roll is evidently capable of yielding results
thet compare favorably with those of highly refined methods. Although
the method has been tested for only two conflgurations at supersonic
speeds, there 1ls no reason to suspect that the sgreement for other con-
figurations at other speeds would be significantly worse.

The foregoing discussion is not meant to imply that this method i1s
eapplicable in all caeses. For instance, one of the most worrisome prob-
lems facing the aeroelasticlan 1s that of chordwise distortion of the
wing; the effects of chordwise distortion, which often sppears in wings
with very low aspect ratlo, are not considered 1n this paper. In addi-
tion, the single-mode Galerkin-type approach used herein may not be good
enough for some configurations; with a highly swept wing having inboard
ailerons, for example, the actual twist distribution changes radically
with dynemic pressure, and no single assumed twist mode shape could be
expected to yield good results over the entire range of dynamic pressure.
However, such configurations are rarely encountered. ZLastly, it is clear
that any results obtained by this method would be only as good as the
structural and aserodynamic ingredients introduced into the calculations.
For this reason, the methods of structural and serodynamic analysis must
be rellable. In some cases - at transonic speeds, for instance - resort
would have to be made to experiment to determine parts of the basic

information.

Although the attention throughout this report has been confined to
the rolling problem, the same type of approach could be used for other
static-seroelastic problems such as torsionael divergence and center-of-

pressure shift.

Langley Aeronautical Leborsatory,
National Adviscry Committee for Aeronasutics,
Lengley Fleld, Va., December 16, 1954.
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TABLE I

TORSIONAL INFLUENCE COEFFICIENTS FOR
E{AMPLE CONFIGURATIONS

(a) Modsl 1j % = 5,151 1b/nq £t
)

o] 0.007838 0.015492 0.019693 0.021595 0.023266 0.02%%%kL 0.02435L 0.024%70 0.024704 0.024802
0 0.018492  0.042839 0.061202 0.07128% 0.076821 0.079869 0.081560 0.082520 0.083104 0.083551
) 0.019693  0.061202  0.102832  0.1290%8  0.1k3435  0.1%1360 0.1557%6  0.1%82%0  0.259T70  €.180879
0 0.021959  0.07128%  0.125038  0.179396  0.210T5  0.227862  0.237366  0.2k2760  0.2460kT  O.2%8kkk

0.023266  0.076821  0.1h3433  0.210725  0.26655T  0.300853  0.319369  0.3330hk  0.336B45  0.341513

o

1
[a] - &
0 0.02395%  0.079869  0.151360  0.227862  0.3006% 0.359659 0.%9576%  0.B16260  0,4287h5 0.k37052
o} 0.024351  0.081560  0.1557%6 0.237366  0.319%6% 0.395765  0.45T123  0.kgshle 0.5187h9  0.535766

Q 0.024370 0.082520 0.158250 0.242760 0.330304 0.416260 0.255419 0. 5600%2 0.605147 0.634583

o] g.02h70h 0.083104 0.159770 0.2h604T 0.33643 0.h287h5 0.5187h9 0.603147 0.676155 0. 733861

Lo 0.02k&2  0.083331  0.160879  0.2kEkhk  0.3%1613  0.M37THS2  0.535766  0.634%83 0.733861  0.833338

() Hodel 2; 91{- ~ 2,813 Ibfaq £t
=3

l_o T o 0 0 ) o o o o 0 0
0  0.0439%6  0.072161  0.082136  0.086915  0.086996  0.089503  0.090298  0.090MT3  0.0805%  0.050601
o} 0.0TLL61  0.1%1088  0.162377  0.176000  0.181933  0.18k%18  0.1836k6  0.18614k 0.18373  0.186%08
0 0.08213%6  0.162377  0.226297  0.209266  0.2736k2  o.279%0k  0.280638  0.2536k3  0.283k03  0.28%725
0 0.086815  0.176000  0.259856  0.328466  0.358083  0.37268  0.3790T:  0.361888  0.383195  0.3839%0

0.088096  0.181933  0.2736k2  0.338053  0.4237%6  0.357575  0.W72337  O.ATSBMS  0.481867  0.kE3612

1
o,
| ]
|

o

ar
0 0.065503 0.184518  0.27990h 0.372685 0557575 0.52%516 0.55750% 0.5T72492 0. 57k8 0583468

0 0.090298  0.1856h6  0.282638  0.37907TL  O.KTR33T  0.55T505  0.623719  0.658175  0.67R166  0.683400

[} 0.090473 0.1851hL 0.283843 0.38.088 0.478846 0.5T2492 0.658L75 O.T25h1h 0.762157 0.783372
0 0.050%%4 0.186375 0.28430%  0.38%19%  O.381867  0.579MBS  0.67kI66  0.762157  0.834623  0.8833%
0 0.090601  0.186%08  0.284726  0.3839%0  0.483612  0.58%464 _ 0.683500  0.783372  0.8833% 0.983551_‘
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TABLE IT

AFRODYNAMIC COEFFICIENTS FOR My = 1.202

y/v | e, (v/0) eqp(y/1) | ey (3/1) | eqq (v/0)
Model 1

0 ~1.000000 0 6.000000 0
.1 -1.415569 -.038833 5.662275 .155333
.2 ~1.749190 -.105254 5.247568 .315763
.3 -2.015077 -.183793 k. 836184 43705
L -2.212072 -. 266137 4, 42Lh151 532274
.5 -2.%3%3569 -. 344835 L, 000430 .591149
.6 -2.36757h -. 411680 3.551063 617521
.7 -2.202641 -. 456080 3.05684h .608105
.8 -2.070005 -.he1762 2. 484005 554115
.9 -1.60L045 -.395341 1.749870 431281

1.0 0 0 0 0

Model 2

0 ~-1.145629 0.055563 6.000000 -0.291000
.1 -1.546673 .036198 | 5.689547 -.133159
.2 -1.865921 -.014636 5.280627 .0k1662
.3 -2.117637 -.080833 4. 883205 .186398
b -2.300731 -. 154066 4. W71233 299412
.5 -2.40860L -.227246 k.o4k883 . 381624
.6 -2.429104 -.292778 3.591357 L432862
T -2.341335 ~-.341137 3.091764 450477
.8 -2.105803 -. 358047 2.512328 k27169
.9 -1.626493 -.31h76k 1.769672 Bhehr2

1.0 0 0 0 0
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TABLE IIT

NACA TN 3370

TWIST MODE SHAPES USED IN GALERKIN~TYPE SOLUTION

61 for -
¥/
Model 1 Model 2
0 0 0
1 .057166 .167091
.2 .182638 . 331836
.3 . 332681 483678
b 482540 .616914
5 .619788 LT3027h
.6 .737187 . 822233
.7 . 832533 .893651
.8 - 905312 - 94L6LY
-9 + 9590352 978453
1.0 1.000000 1.000000
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TARLE IV
VALUES OF A, Bg, 3By, Bs, Cle’ Czp, AND 025
1 GJ GJ GJ
Mo Ax = |By X X X c c c
R LA R A B LI
Model 1
1.108(0.423%98(0.087669 |-0.084086 |-0.094806 |0. 522170 | ~0.526021 |0. 462000
1.202| .L23398| .0562k2 | -.053038| -.067719| .5:3180] -.55216k| .330000
1.338] .Lk23398| 035716 | -.033229| -.050789| .510437| ~.514456| 247500
1.667] .423398] .016822 | -.015677| -.033859| .L20363| - 417hkg| 165000
2,818 .423398) .004079 | -.003882] -.016930| .252679| -.24k8333| .082500
Model 2
1.108(0.510760|0.128009 |-0.112045 [-0.174174 [0.630158 |-0.562615 [0. 472194
1.202} .510760| .06767L | -.058776| -.124k10| 649197 ~.581382] .337281
1.338| .510760| .032038 | -.028037 | -.093307| .603209| -.537432| .252961
1.667| .510760! .005056 | -.005035 | -.062205| 488809 -.k3348| 16861
2.848| .510760{-.006153 .005059 | -.031102} .288649| -~.256513) 084320




2k

N 77

JD

\r/,/é?

<—-QZ—-—

|

X

L
2

NACA TN 2370

"

4
I
M
[}
[
[l
i
(1
I
|
HI
H
il
N
)

Section A-A

>

Figure 1l.- Configuratlion considered in aeroelastlc analysis.
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Flgure 2.- Example configurations.
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